

Time-Dependent, Multi-Wavelength Models for Active Flares of Fermi Blazars

Matthew G. Baring,¹ Markus Boettcher,²

and Errol J. Summerlin³

¹Rice University, ²North-West University Potchefstroom, ³NASA's Goddard Space Flight Center

¹baring@rice.edu

Fermi Symposium, Baltimore, MD, October 16th 2018

Confined Acceleration + Radiation Zones

M87 (Harris & Krawczynski 2006)

- *Right*: Schematic of our blazar model geometry, consisting of a region proximate to the shock that is the acceleration (injection) zone which is embedded in a much larger radiation zone.
- Also depicted is a turbulent field, signified by the red field line projections.

Two-zone

Numerical Scheme

- Injection spectra $Q_{\epsilon}(\gamma,t')$ from turbulence characteristics + MC simulations of DSA
- Injection from small acceleration zone (shock) into larger radiation zone
- Time-dependent leptonic code based on Böttcher & Chiang (2002)
- Radiative processes:
 - Synchrotron
 - Synchrotron self-Compton (SSC)
 - External Compton (EC: dust torus + BLR + direct accretion disk)

 $Q_e(\gamma,t') = Q_e(\gamma) H(t'; 0, Dt')$, primes denoting comoving jet frame.

Time-Dependent Electron Evolution with Radiative Energy Losses

The acceleration timescale for electrons is short: it scales as the cyclotron period (for shock drift and diffusive acceleration):

$$t_{\rm acc} \sim \eta t_{\rm cyc} = \eta \frac{2\pi\gamma\beta m_e c}{eB} \ll t_{\rm cool}, t_{\rm dyn}$$

for most electrons, i.e. those below around 300 MeV in blazars.

- For time evolution of blazar flares, we therefore use a shock-acceleration electron distribution (from Summerlin & Baring 2012) as an **instantaneous injection** $Q_e(\gamma)$.
- Then solve a Fokker-Planck equation for electron distribution evolution in the jet frame:

$$\frac{\partial n_e}{\partial t'} = -\frac{\partial}{\partial \gamma} (\dot{\gamma} n_e) + Q_e(\gamma, t') - \frac{n_e}{t_{\rm esc}} \quad \text{for} \quad n_e \equiv n_e(\gamma, t').$$

This includes competition between acceleration and cooling.

One-zone Multiwavelength SSC fits to BL Lacertae

- SSC explains X-rays but cannot fit gamma-rays; EC component added.
- Large η (~10⁷) needed to move synchrotron peak into optical (for LBLs).

Shock Injected and Cooled Electrons

• The non-thermal particle spectral index and thermal-to-non-thermal normalization from Monte Carlo acceleration simulations are strongly dependent on η_1 (=100 in the figure) and α (=3 in figure).

Evolving MW Spectra during 3C 279 flares – Dec 2013-Apr 2014

- Time evolution of MW spectra for 3C 279 during strong flares in January 2014.
- Model curves are derived for flare C only, with different times during a flare corresponding to different colors and linestyles.

3C 279: Time Evolution Models for Flare C

- Left panel: Model time traces of vF_v fluxes displaying various delays in radio to gamma-ray wavebands during Flare C. Onset of injection is at t=0.
- *Right panel*: Evolutionary traces in the spectral index/flux plane with time directions as indicated. The different wavebands are labeled by their components: synchrotron, SSC and external Compton. Spectral hysteresis assumes a characteristic counter-clockwise form.

3C 279: Fermi-LAT light curves

- Periods B and D suggest possibly asymmetric injection of duration close to GeV cooling timescales (1-3 hours)
- Hayashida et al. (2015, ApJ 807:79)

Conclusions

- Broadband blazar spectra: X-ray/ γ -ray diagnostics on turbulence power spectra and particle diffusion.
 - Details in Baring, Böttcher & Summerlin (MNRAS 464, 4875, 2017)
- Coupled Monte Carlo Simulations of diffusive shock acceleration and radiation transport reveal strongly energy-dependent mean-free-path to scattering.
 - MW fits demand $\eta = \lambda/r_g$ to be an increasing function of p as scales sample greater distances from the shock.
- 3C 279 (an LBL) presents a particular temporal case:
 - Hardness/flux evolution displays characteristic counterclockwise spectral hysteresis in all bands.
 - X-rays and radio are well-correlated, but lag optical and γ -rays by about 5-9 hours. => comparative cooling times.
 - Different lags/hysteresis are expected for other blazar types.
- Spectroscopy and evolution present consistency in model parameter determination.
- Next test: modeling hard Fermi-LAT Flare B.

3C279 – Flare C Discrete Correlation Functions

3C279

The discrete correlation function is

$$|\mathcal{C}_{a,b}(\tau)| \equiv \frac{1}{\mathcal{N}_a \mathcal{N}_b} \int_{-\infty}^{\infty} \mathcal{F}_a(t) \, \mathcal{F}_b(\tau - t) \, dt$$

for fluxes $\mathcal{F}_{a,b}$ in wavebands a,b, with

$$\mathcal{N}_a = \int_{-\infty}^{\infty} \mathcal{F}_a(t) dt$$

defining the normalizations.

After Edelson & Krolik (1988, ApJ 333, 646).

- **DCF** measures relative fluxes between different bands.
- Optical and γ -rays well correlated (0 lag). X-rays and radio well correlated (0 lag).
- X-rays and radio **lag** optical + γ -rays by **5-9 hrs**, latter being generated by higher energy electrons, and therefore possessing a shorter response (cooling) time.

One-zone Multiwavelength SSC fits to Mrk 501

- Synchrotron explains X-rays but cannot fit optical/UV; galaxy component added.
- Large η (~10⁴) needed to move synchrotron peak $E_{max} \sim m_e c^2/(\eta \alpha_f)$ into X-rays.
- Need for large $\eta = \lambda/r_g$ in blazars identified by Inoue & Takahara (1996).

Shock Acceleration Injection Efficiencies

 $\eta(\mathbf{p}) = \lambda/\mathbf{r}_{\mathbf{g}} \sim \eta_1 (\mathbf{p}/\mathbf{m}\mathbf{c})^{\alpha-1}$ Baring et al. (MNRAS, 2017) $\beta_{1x} = 0.71$ $\lambda/r_{\rm g}=1$ $\beta_{1HT} = 0.84$ $\lambda/r_{\rm g} = 10^2$ r = 3.71 $\log_{10} \left[\left. \mathrm{n_{e,p}}(\gamma \! eta) / \mathrm{n_{e,p}} \right.
ight]$ $\mathbf{n_{e,p}}(\gamma\beta) \alpha (\gamma\beta)$ $\lambda/\mathbf{r_g} = 3 (\mathbf{p}/\mathbf{p_1})$ $\lambda/\mathbf{r}_{g} = 100 \, (\mathbf{p}/\mathbf{p}_{1})$

• The non-thermal particle spectral index and thermal-to-non-thermal normalization from Monte Carlo acceleration simulations are strongly dependent on η_1 (=3,100 in the figure) and α (=1/2, 2 in figure), and the B-field obliquity to the shock normal!

 $Log_{10}[\gamma\beta]$

Constraining SSC fit Parameter $\eta = \lambda_{\parallel}/r_{g}$

• Large η needed to move synchrotron peak $E_{max} \sim m_e c^2/(\eta \alpha_f)$ into X-rays.

Canonical Turbulence Power Spectrum

- Inertial range can span
 1-5 orders of magnitude.
- Doppler gyro-resonance condition $\omega = \Omega/\gamma$ may not be satisfied by charges with large gyroradii;
- => increase of diffusive mean free path parameter $\eta = \lambda/r_g$ at large momenta.
- Expect $\lambda \propto p^2$ at long wavelengths, below stirring scale (QLT).

